Quantum codes from affine variety codes and their subfield-subcodes

نویسندگان

  • Carlos Galindo
  • Fernando Hernando
چکیده

We use affine variety codes and their subfield-subcodes for obtaining quantum stabilizer codes via the CSS code construction. With this procedure we get codes with good parameters, some of them exceeding the quantum Gilbert-Varshamov bound given by Feng and Ma.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New binary and ternary LCD codes

LCD codes are linear codes with important cryptographic applications. Recently, a method has been presented to transform any linear code into an LCD code with the same parameters when it is supported on a finite field with cardinality larger than 3. Hence, the study of LCD codes is mainly open for binary and ternary fields. Subfield-subcodes of $J$-affine variety codes are a generalization of B...

متن کامل

On the distance of stabilizer quantum codes from J-affine variety codes

Self-orthogonal J-affine variety codes have been successfully used to obtain quantum stabilizer codes with excellent parameters. In a previous paper we gave formulae for the dimension of this family of quantum codes, but no bound for the minimum distance was given. In this work, we show how to derive quantum stabilizer codes with designed minimum distance from J-affine variety codes and their s...

متن کامل

New quantum codes from evaluation and matrix-product codes

Stabilizer codes obtained via the CSS code construction and the Steane’s enlargement of subfield-subcodes and matrix-product codes coming from generalized ReedMuller, hyperbolic and affine variety codes are studied. Stabilizer codes with good quantum parameters are supplied, in particular, some binary codes of lengths 127 and 128 improve the parameters of the codes in http://www.codetables.de. ...

متن کامل

A Linear Algebraic Approach to Subfield Subcodes of GRS Codes

The problem of finding subfield subcodes of generalized Reed–Solomon (GRS) codes (i.e., alternant codes) is considered. A pure linear algebraic approach is taken in order to derive message constraints that generalize the well known conjugacy constraints for cyclic GRS codes and their Bose– Chaudhuri–Hocquenghem (BCH) subfield subcodes. It is shown that the presented technique can be used for fi...

متن کامل

Codes and the Cartier Operator

In this article, we present a new construction of codes from algebraic curves. Given a curve over a non-prime finite field, the obtained codes are defined over a subfield. We call them Cartier Codes since their construction involves the Cartier operator. This new class of codes can be regarded as a natural geometric generalisation of classical Goppa codes. In particular, we prove that a well-kn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Des. Codes Cryptography

دوره 76  شماره 

صفحات  -

تاریخ انتشار 2015